[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
::
پایگاه های نمایه کننده
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: جستجو در مقالات منتشر شده ::
۱ نتیجه برای پیش بینی

مهران سعیدی اقدم، احمد صادقی، علیرضا بحیرایی، سید یوسف حاجی اصغری،
دوره ۱۱، شماره ۴۱ - ( ۱۲-۱۴۰۱ )
چکیده

پیش بینی قیمت سهام امری پیچیده است؛ مؤلفه­های گوناگونی از قبیل وضع عمومی اقتصاد، رخداد­های سیاسی و انتظارات سرمایه گذاران، بر بازار سهام تأثیر می گذارد. بازار سهام، در حقیقت یک سیستم غیرخطی و آشوبناک است که به عوامل متعدد سیاسی، اقتصادی و روانی وابسته است، برای غلبه بر محدودیت تکنیک­های تحلیل سنتی در پیش بینی الگوهای غیرخطی، متخصصان طی دو دهه اخیر تکنیک­های هوشمند و بخصوص شبکه­های عصبی مصنوعی و الگوریتم ژنتیک را برای بهبود پیش بینی قیمت سهام به کاربرده اند. این پژوهش، با توجه به گسترش روز افزون روش های پیش بینی در بازارهای مالی و نیز، از آنجا که قیمت سهام یکی از مهم ترین عوامل مؤثر در تصمیمات سرمایه گذاری است و پیش بینی آن می تواند نقش با اهمیتی در این زمینه ایفا کند، در این پژوهش سعی شده است، مدلی ارائه شود تا بر اساس آن بتوان روند حرکتی قیمت سهام مورد نظر را با دقت بالایی پیش بینی کرد. بر همین اساس، یک مدل ترکیبی برای پیش بینی روند حرکتی قیمت سهام با استفاده از شبکه عصبی مصنوعی ارائه شده است. برای نمونه آماری، شرکت های برتر بورس اوراق بهادار در سه ماهه دوم سال ۱۳۹۹ انتخاب شده است. سپس برای هراین منظور، ۳۲ متغیر محاسبه شد. این متغیرها ورودی مدل هستند و به کمک الگوریتم  شبکه عصبی مصنوعی بهینه سازی شده اند. نتایج نشان می دهد، مدل در پیش بینی روند حرکتی قیمت سهام بسیار بهتر عمل کرده و درمقایسه باروش های سنتی، از دقت بالاتری برخوردار است.


صفحه 1 از 1     

نشریه اقتصاد و بانکداری اسلامی Islamic Economics and Banking
Persian site map - English site map - Created in 0.09 seconds with 26 queries by YEKTAWEB 4691